Banner page

1×8 1*8 1:8 Mini tube type PLC fiber optic splitter

Short Description:

• Low insertion loss, high return loss

• Excellent Temperature stability

• Good repeatability and exchangeability

• Excellent mechanical endurance

• Strict curing time and temperature control

• Strict testing standards and methods for quality

• Environment protection (ROHS Compliance)

• The fiber optical patch cord can be customized according to customers’ specifications requirements (Customized Connector/ Length/ package…)


Product Detail

Product Tags

Product Description:

 The PLC fiber optic splitter is based on planar Lightwave circuit technology and precision aligning process, can divide a single/dual optical input(s) into multiple optical outputs uniformly and is denoted 1*N or 2*N.

• PLC fiber optic splitter is a type of optical power management device that is fabricated using silica optical waveguide technology.

• It features small size, high reliability, wide operating wavelength range and good channel-to-channel uniformity, and is widely used in PON networks to realize optical signal power splitting.

 PLC fiber optic splitter offers superior optical performance, high stability and high reliability, meet various application requirements in different environments.

 1x8 PLC fiber optic splitter is come with 1 input and 8 output. Input and output cable length can be 0.6m, 1.0m, 1.5m or customized. It is avaible with many type of connector such as: SC/UPC, SC/APC, LC/UPC, LC/APC,

• 1x8 PLC fiber optic splitter is wide used in 8 ports rack mount box for distriution frame, or also wide used in 8 ports outdoor fiber optic distribution box.

Application:

FTTX networks

PON networks

CATV links

Data Communication

Telecommunication

Optical Signal Distribution

Feature:

Low insertion loss, high return loss

Excellent Temperature stability

Good repeatability and exchangeability

Excellent mechanical endurance

Strict curing time and temperature control

Strict testing standards and methods for quality

Environment protection (ROHS Compliance)

The fiber optical patch cord can be customized according to customers' specifications requirements (Customized Connector/ Length/ package...)

Parameter:

Port Configuration 1*8
Insertion Loss (dB) Max 10.6
Loss Uniformity (dB) 1.0
PDL(dB) 0.25
Wavelength Dependent Loss(dB) 0.3
Temp. Dependent Loss (-40~85 ) (dB) 0.4

Note: The above parameter is for splitter without connector.

Port Configuration 1*8
Insertion Loss (dB) Max 10.8
Loss Uniformity (dB) 1.0
PDL(dB) 0.2
Wavelength Dependent Loss (dB) 0.3
Temp. Dependent Loss (-40~85°C ) (dB) 0.4

Note: The above parameter is for splitter with connector.

Absolute Maximum Ratings

Parameter

Symbol

Min.

Typical

Max.

Unit

Storage Temperature

TS

-40

 

+85

°C

Case Operating Temperature SFP+ -10G-LR

TA

0

 

70

°C

SFP+ -10G-LR-I

-40

 

+85

°C

Maximum Supply Voltage

Vcc

-0.5

 

4

V

Relative Humidity

RH

0

 

85

%

Electrical Characteristics (TOP = 0 to 70 °C, VCC = 3.135 to 3.465 Volts)

Parameter

Symbol

Min.

Typical

Max.

Unit

Note

Supply Voltage

Vcc

3.135

 

3.465

V

 

Supply Current

Icc

 

 

430

mA

 

Power Consumption

P

 

 

1.5

W

 

Transmitter Section:
Input differential impedance

Rin

 

100

 

Ω

1

Tx Input Single Ended DC Voltage Tolerance (Ref VeeT)

V

-0.3

 

4

V

 

Differential input voltage swing

Vin,pp

180

 

700

mV

2

Transmit Disable Voltage

VD

2

 

Vcc

V

3

Transmit Enable Voltage

VEN

Vee

 

Vee+0.8

V

 

Receiver Section:
Single Ended Output Voltage Tolerance

V

-0.3

 

4

V

 

Rx Output Diff Voltage

Vo

300

 

850

mV

 

Rx Output Rise and Fall Time

Tr/Tf

30

 

 

ps

4

LOS Fault

VLOS fault

2

 

VccHOST

V

5

LOS Normal

VLOS norm

Vee

 

Vee+0.8

V

5

Notes: 1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
2. Per SFF-8431 Rev 3.0.
3. Into 100 ohms differential termination.
4. 20%~80%.
5. LOS is an open collector output. Should be pulled up with 4.7k – 10kΩ on the host board. Normal operation is logic 0; loss of signal is logic 1. Maximum pull-up voltage is 5.5V.

Optical Parameters (TOP = 0 to 70°C, VCC = 3.135 to 3.465 Volts)

Parameter

Symbol

Min.

Typical

Max.

Unit

Note

Transmitter Section:
Center Wavelength

λt

1290

1310

1330

nm

 

spectral width

λ

 

 

1

nm

 

Average Optical Power

Pavg

-6

 

0

dBm

1

Optical Power OMA

Poma

-5.2

 

 

dBm

 

Laser Off Power

Poff

 

 

-30

dBm

 

Extinction Ratio

ER

3.5

 

 

dB

 

Transmitter Dispersion Penalty

TDP

 

 

3.2

dB

2

Relative Intensity Noise

Rin

 

 

-128

dB/Hz

3

Optical Return Loss Tolerance

 

20

 

 

dB

 

Receiver Section:
Center Wavelength

λr

1260

 

1355

nm

 

Receiver Sensitivity

Sen

 

 

-14.5

dBm

4

Stressed Sensitivity (OMA)

SenST

 

 

-10.3

dBm

4

Los Assert

LOSA

-25

 

-

dBm

 

Los Dessert

LOSD

 

 

-15

dBm

 

Los Hysteresis

LOSH

0.5

 

 

dB

 

Overload

Sat

0

 

 

dBm

5

Receiver Reflectance

Rrx

 

 

-12

dB

 

Notes: 1. Average power figures are informative only, per IEEE802.3ae.
2. TWDP figure requires the host board to be SFF-8431compliant. TWDP is calculated using the Matlab code provided in clause 68.6.6.2 of IEEE802.3ae.
3. 12dB reflection.
4. Conditions of stressed receiver tests per IEEE802.3ae. CSRS testing requires the host board to be SFF-8431 compliant.
5. Receiver overload specified in OMA and under the worst comprehensive stressed condition.

Timing Characteristics

Parameter

Symbol

Min.

Typical

Max.

Unit

TX_Disable Assert Time

t_off

 

 

10

us

TX_Disable Negate Time

t_on

 

 

1

ms

Time to Initialize Include Reset of TX_FAULT

t_int

 

 

300

ms

TX_FAULT from Fault to Assertion

t_fault

 

 

100

us

TX_Disable Time to Start Reset

t_reset

10

 

 

us

Receiver Loss of Signal Assert Time

TA,RX_LOS

 

 

100

us

Receiver Loss of Signal Deassert Time

Td,RX_LOS

 

 

100

us

Rate-Select Chage Time

t_ratesel

 

 

10

us

Serial ID Clock Time

t_serial-clock

 

 

100

kHz

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name

product3

Pin Function Definitions

PIN

Name

Function

Notes

1

VeeT Module transmitter ground

1

2

Tx Fault Module transmitter fault

2

3

Tx Disable Transmitter Disable; Turns off transmitter laser output

3

4

SDL 2 wire serial interface data input/output (SDA)

 

5

SCL 2 wire serial interface clock input (SCL)

 

6

MOD-ABS Module Absent, connect to VeeR or VeeT in the module

2

7

RS0 Rate select0, optionally control SFP+ receiver. When high, input data rate >4.5Gb/ s; when low, input data rate <=4.5Gb/s

 

8

LOS Receiver Loss of Signal Indication

4

9

RS1 Rate select0, optionally control SFP+ transmitter. When high, input data rate >4.5Gb/s; when low, input data rate <=4.5Gb/s

 

10

VeeR Module receiver ground

1

11

VeeR Module receiver ground

1

12

RD- Receiver inverted data out put

 

13

RD+ Receiver non-inverted data out put

 

14

VeeR Module receiver ground

1

15

VccR Module receiver 3.3V supply

 

16

VccT Module transmitter 3.3V supply

 

17

VeeT Module transmitter ground

1

18

TD+ Transmitter inverted data out put

 

19

TD- Transmitter non-inverted data out put

 

20

VeeT Module transmitter ground

1

Note: 1. The module ground pins shall be isolated from the module case.
2. This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host_Vcc on the host board.
3. This pin shall be pulled up with 4.7K-10Kohms to VccT in the module.
4. This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host_Vcc on the host board.

SFP Module EEPROM Information and Management

The SFP modules implement the 2-wire serial communication protocol as defined in the SFP -8472. The serial ID information of the SFP modules and Digital Diagnostic Monitor parameters can be accessed through the I2C interface at address A0h and A2h. The memory is mapped in Table 1. Detailed ID information (A0h) is listed in Table 2, and the DDM specification at address A2h. For more details of the memory map and byte definitions, please refer to the SFF-8472, “Digital Diagnostic Monitoring Interface for Optical Transceivers”. The DDM parameters have been internally calibrated.

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions).

product1

Table 2 - EEPROM Serial ID Memory Contents (A0h)

Data Address

Length

(Byte)

Name of

Length

Description and Contents

Base ID Fields

0

1

Identifier

Type of Serial transceiver (03h=SFP)

1

1

Reserved

Extended identifier of type serial transceiver (04h)

2

1

Connector

Code of optical connector type (07=LC)

3-10

8

Transceiver

10G Base-LR

11

1

Encoding

64B/66B

12

1

BR, Nominal

Nominal baud rate, unit of 100Mbps

13-14

2

Reserved

(0000h)

15

1

Length(9um)

Link length supported for 9/125um fiber, units of 100m

16

1

Length(50um)

Link length supported for 50/125um fiber, units of 10m

17

1

Length(62.5um)

Link length supported for 62.5/125um fiber, units of 10m

18

1

Length(Copper)

Link length supported for copper, units of meters

19

1

Reserved

 

20-35

16

Vendor Name

SFP vendor name: VIP Fiber

36

1

Reserved

 

37-39

3

Vendor OUI

SFP transceiver vendor OUI ID

40-55

16

Vendor PN

Part Number: “SFP+ -10G-LR” (ASCII)

56-59

4

Vendor rev

Revision level for part number

60-62

3

Reserved

 

63

1

CCID

Least significant byte of sum of data in address 0-62
Extended ID Fields

64-65

2

Option

Indicates which optical SFP signals are implemented

(001Ah = LOS, TX_FAULT, TX_DISABLE all supported)

66

1

BR, max

Upper bit rate margin, units of %

67

1

BR, min

Lower bit rate margin, units of %

68-83

16

Vendor SN

Serial number (ASCII)

84-91

8

Date code

VIP Fiber’s Manufacturing date code

92-94

3

Reserved

 

95

1

CCEX

Check code for the extended ID Fields (addresses 64 to 94)
Vendor Specific ID Fields

96-127

32

Readable

VIP Fiber specific date, read only

128-255

128

Reserved

Reserved for SFF-8079

Digital Diagnostic Monitor Characteristics

Data Address

Parameter

Accuracy

Unit

96-97 Transceiver Internal Temperature ±3.0 °C
100-101 Laser Bias Current ±10 %
100-101 Tx Output Power ±3.0 dBm
100-101 Rx Input Power ±3.0 dBm
100-101 VCC3 Internal Supply Voltage ±3.0 %

Regulatory Compliance

The SFP+ -10G-LR complies with international Electromagnetic Compatibility (EMC) and international safety requirements and standards (see details in Table following). 

Electrostatic Discharge

(ESD) to the Electrical Pins

MIL-STD-883E

Method 3015.7

Class 1(>1000 V)
Electrostatic Discharge (ESD)

to the Duplex LC Receptacle

IEC 61000-4-2

GR-1089-CORE

Compatible with standards
Electromagnetic

Interference (EMI)

FCC Part 15 Class B

EN55022 Class B (CISPR 22B)

VCCI Class B

Compatible with standards
Laser Eye Safety FDA 21CFR 1040.10 and 1040.11

EN60950, EN (IEC) 60825-1,2

Compatible with Class 1 laser

product.

Recommended Circuit

product4

Recommended Host Board Power Supply Circuit

product5

Recommended High-speed Interface Circuit

Technical Data:

Fiber length 1.0mor Customized
Connector Type SC,LC,

FC

or Customized

Optical Fiber Type G652DG657A1

or Customized

Directivity (dB) Min * 55
Return Loss (dB) Min * 55 (50)
Power Handling (mW) 300
Operating Wavelength (nm) 1260 ~ 1650
Operating Temperature(°C) -40 ~ +85
Storage Temperature(°C) -40 ~ +85

Production line:

product_1

  • Previous:
  • Next:

  • Write your message here and send it to us